Abzählbar — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… … Deutsch Wikipedia
Abzählbar unendlich — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… … Deutsch Wikipedia
Abzählbare Menge — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… … Deutsch Wikipedia
Abzählbarkeit — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… … Deutsch Wikipedia
Cantor'sche Paarungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia
Cantorsche Paarungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia
Cantorsche Tupelfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia
Die cantorsche Paarungsfunktion — (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche Tupelfunktion bezeichnet. Mit… … Deutsch Wikipedia
Nummerierungsfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia
Standard-Tupelfunktion — Die Cantorsche Paarungsfunktion (manchmal auch Nummerierungsfunktion) ist eine in der theoretischen Informatik verwendete Abbildung, die auf dem Diagonalargument von Cantor basiert. Ihre Verallgemeinerung von Paaren auf Tupel wird als Cantorsche… … Deutsch Wikipedia